Synergistic effect of heat and solar UV on DNA damage and water disinfection of E. coli and bacteriophage MS2.

نویسندگان

  • Dana Jennifer Theitler
  • Abid Nasser
  • Yoram Gerchman
  • Abraham Kribus
  • Hadas Mamane
چکیده

The response of a representative virus and indicator bacteria to heating, solar irradiation, or their combination, was investigated in a controlled solar simulator and under real sun conditions. Heating showed higher inactivation of Escherichia coli compared to the bacteriophage MS2. Heating combined with natural or simulated solar irradiation demonstrated a synergistic effect on the inactivation of E. coli, with up to 3-log difference for 50 °C and natural sun insolation of 2,000 kJ m(-2) (compared to the sum of the separate treatments). Similar synergistic effect was also evident when solar-UV induced DNA damage to E. coli was assessed using the endonuclease sensitive site assay (ESS). MS2 was found to be highly resistant to irradiation and heat, with a slightly synergistic effect observed only at 59 °C and natural sun insolation of 5,580 kJ m(-2). Heat treatment also hindered light-dependent recovery of E. coli making the treatment much more effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation.

The goal of this study was to evaluate the potential of an advanced oxidation process (AOP) for microbiocidal and virucidal inactivation. The viruses chosen for this study were bacteriophage MS2, T4, and T7. In addition, Bacillus subtilis spores and Escherichia coli were studied. By using H(2)O(2) in the presence of filtered ultraviolet (UV) irradiation (UV/H(2)O(2)) to generate wavelengths abo...

متن کامل

Comparison of UV-Induced Inactivation and RNA Damage in MS2 Phage across the Germicidal UV Spectrum.

Polychromatic UV irradiation is a common method of pathogen inactivation in the water treatment industry. To improve its disinfection efficacy, more information on the mechanisms of UV inactivation on microorganisms at wavelengths throughout the germicidal UV spectrum, particularly at below 240 nm, is necessary. This work examined UV inactivation of bacteriophage MS2, a common surrogate for ent...

متن کامل

Photocatalytic Removal of Escherichia Coli by ZnO Activated by Ultraviolet-C Light from Aqueous Solution

Abstract: Background and objectives: There is a great interest in photocatalytic oxidation of contaminants, using ZnO, in recent years. The main objective of this research was to study photocatalytic disinfection of E. coli bacteria as water microbial pollution index, using nano particles of ZnO and a UV lamp in a batch reactor. Material and Methods: In this study, the contaminated water sample...

متن کامل

Synergistic bactericidal activity of a naturally isolated phage and ampicillin against urinary tract infecting Escherichia coli O157

Objective(s): Bacteriophages are infectious replicating entities that are under consideration as antimicrobial bioagents to control bacterial infections. As an alternative or supplement to antibiotics, bacteriophages can be used to circumvent the resistance to existing antibiotics. The aim of this study was to assess the synergistic effect of a naturally isolated phage...

متن کامل

Role of RecA in the Protection of DNA Damage by UV-A in Escherichia coli

Solar Water Disinfection (SODIS) is a simple, yet effective method for water decontamination by utilizing heat and UV-A from sunlight to kill microbes. However, the mechanism for UV-A mediated cell death is unknown. UV-A has been shown to cause DNA damage by the induction of reactive oxygen species (ROS). This damage might cause cell death in SODIS. Therefore, we investigated whether limiting t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of water and health

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 2012